Fourier Transform Properties/Theorems

Linearity Property: F{af(t) + bg(t)} = af(1) + bg(A)

Time Shifting Property: F{f(t — a)} = f(1)e"*

Proof: Using the definition of Fourier Transform, F{f(t — a)} = L foooo f(t — a) e dt. Now, let

N
u =t — a. Then du = dt and the limits of integration do not change. Hence, F{f (t — a)} =

1 o — 1 o —i —i —i 1 © —i
Ef_m f(u) e iA(u+a) du = Ef—oo f(u) e L)lue ila du=e ila [ﬁ f_m f(u) e ilu du] —
e" M f(1). m
Frequency Shifting Property: F{e!% f(t)} = f(A — a)
Proof: Using the definition of Fourier Transform, F{e'® f ()} = \/%f_moo f(t)eld e~ gt =

=l fOe T dr = = [T f(Oe' @D de = = [T f()eT P dt = f(A—a). m

Time Scaling Property: F{f(bt)} = |—ll)| f (%) forany b € R\ {0}

Proof: We must consider two possible cases. Recall the definition of absolute value, which states that
—b, b<O0
bl ={

b, bZOforaIIbER.

Case 1: Suppose that b > 0. By definition of Fourier Transform, F{f (bt)} = \/%ff; f(bt) e % dt.

Now, let u = bt. It follows that t = Landdt = Zdu. Since b is positive, the limits of integration remain

b
the same. Hence, F{f (bt)} = F{f (W)} = \/%_nffom fw e“"l(“/b)%du = %\/%_nff; f(u) e ™ /bgy =
: [\/L_fjomf(u) e‘i“(’l/b)du] = lf (i) Now, since b is positive, then |b| = b, so %f (%) = ”1’—| F (%)
Thus, F{f (bt)} = m ( )when b > 0.

Case 2: Suppose that b < 0. By definition of Fourier Transform, F{f (bt)} = \/%fj; f(bt) e ™ dt,

Now, let v = bt. It follows that t = %and dt = Zdt' Since b is negative, the limits of integration are

reversed. Hence, F{f (bt)} = F{f(v)} = \/%f;wf(v) e‘i(”/bM%dv -3 \/z_f f(v) e WA /bdy =

-1 [J% fjo f) e‘“’(l/b)dv] = —lf (i) Now, since b is negative, then |b| = —b, so _Ef (3) =

|11)| ()Thus T{f(bt)}—m ()whenb<0

By the two cases, we have proven that F{f (bt)} = ITI ( ) forallb # 0. m



Frequency Scaling Property: F {|b| f( )} f(bA) forany b € R \ {0}

Proof: We will start with the right side of the equation, and show that F~ 1{f(bl)} = m (%) Now, we
must consider two possible cases. (Recall the definition of absolute value, which states that |b| =

—-b, b<O0

{ b, b 20foraIIb € R.)

Case 1: Suppose that b > 0. By definition of Inverse Fourier Transform,

T‘l{f(bl)} = \/%fjooof(bl) et dA. Now, let u = bA. It follows that A = %and dA = %du. Since b is
positive, the limits of integration remain the same. Hence,

FHFGD) = FHf @} = 5= [, f@) e /D s du = 2 —= [ f(u) e /P du =

l[\/L_f_“’mf(u) eiu(t/b)du] =1 ( ) Now, since b is positive, then |b| = b, so - f( ) ! ( ) Thus,

1b]
FYFbA)} = |b| () when b > 0.

Case 2: Suppose that b < 0. By definition of Inverse Fourier Transform,

FHf D} = \/%_nffomf(b)l) et d). Now, let v = bA. It follows that A = %and dA = %dv. Since b is
negative, the limits of integration are reversed. Hence,

FHFGDY = F W)} = 5= [,7 f@) e /D Ldu = 2= [ fv)e™/Pdv =

—%L[%fm f) e“’(t/b)dv] = —lf (3) Now, since b is negative, then |b| = —b, so —;f (i) =

|2| ()Th“ST 1{f(b/1)}—m ()whenb<0

By the two cases, we have proven that F~ 1{f(bl)} = m (%) forallb # 0. m

Time Differentiation: F {if(t)} = ({iDf)

Proof: By definition of Fourier Transform, 9—"{ f(t)} \/_f f(t) e dt. To calculate this, we must
integrate by parts by letting u = e, du = —(it)e*, dv = f (t) dt, and v = f(t). Hence,
T{:—tf(t)} = \/%[f(t)e_i’“]:oz_m mf f(t) (it)e* dt = 0 + \/_f £(t) (it)e dt since
f() = 0for large |t]. Now, = [ f(£) (i) dt = = (it) [, f(£) e dt = (it)f (). This
completes the proof. m

Frequency Differentiation: F{(—it)f(t)} = %f(l)

Proof: We will start with the right side, and prove that F =1 {if(l)} = (—it)f(t). By definition of
Inverse Fourier Transform, F 1 { f(/'[)} «/_f f'(1) et dA. To calculate this, we must integrate
by parts by letting u = e, du = (it)e”** dA, dv = f'(1), and v = f(1). Hence, F~ {Ef(/l)} =

\/%_n [fe™]; - \/%_n [2 F) (it)et da =0 — J% [2 F) (it)e da since f(2) = 0 for large



|A]. Now, —\/%fjooof(/l) (it)et da = —(it) \/%f_moo f) et dA = —(it)f(t). Since the equation
F-1 {%f(l)} = (—it)f(t) is logically equivalent to the equation F{(—it)f(t)} = %f(l), then we
have proven that F{(—it)f(t)} = %f(l). [ ]

Convolution Theorem: Define the convolution of f and g, denoted (f * g)(t), as
fjooo f(x)g(t — x) dx.If f and g are piecewise continuous and absolutely
integrable, then F{(f * g)(t)} = V2rf(1)g(A).

Proof: By definitions of Fourier Transform and convolution, {(f * g)(t)} = \/%f:o(f *g)(t)e M dt =
\/%f_moo [/ feOg(t —x)dx]e ™ dt = \/%fj; J= F(x)g(t — x) e~ dx dt. By Fubini’s Theorem,
we obtain —= [ [ f(0g(t - x) e~ M dtdx == [" f(x) [7 g(t - x) e dt dx. Now, let

u =t — x. Then du = dt and the limits of integration do not change. Hence, we obtain

= F0 [7, g e M dudx = [7) f@0) [ = [, gwe™ M du| e~ dx =

Y

5, fg() e M dx = G(A) [, F(x) e dx = G2 | 7= [, f() e dx] =
GOV f (1) = V2rf(1)G(A). This completes the proof. m

Plancheral Theorem: If f and g are square integrable functions in the vector

space L?(—, ), then< f,g >=< f,g >or [__f®) gi)dt = ["_F(A)g(A) da.

Proof: By definition of Fourier Transform, and by complex number properties, we have

[ fWgmdr = [, fD 5=, g e ¥ dtdi == [ f) [7, g(6) e™ dt dA. By Fubini's
Theorem, we obtain \/%f_mm FO 7 g®) e dadt = \/%fio gO[f> Fe da]dt =

INI0) [\/% 1= (e dxl] dt = [ g()f () dt. This completes the proof. m

Duality Theorem: If F{f(t)} = f(A), then F{f(t)} = f(—A).
Modulation Theorem: If F{f(t)} = f(4), then:

1. F{f(t) cosat} = % fA-a)+f(A+a)]

2. F{f(O)sinat} = - [f(A - a) - F(4 + a)].
Proof: By trigonometric identities, time shifting property, and linearity, we have F{f (t) cosat} =
O ]} = 7 e + 0] = {70} + Sr{r 0 ) =
%[f(/l —a)+f(A+ a)]. In a similar fashion, we have F{f (t) sinat} = F {f(t) % [eiat _ e—iat]} _
F{Lf®e® - f(e @} = ZF(f()e} - 2 F{f()e™ ™} = = [f(A— a) - f(A + @)]. This

completes the proof. m



Shannon-Whittaker Sampling Theorem: Let f be a function such that f(2) is
piecewise differentiable, continuous, and equal to zero for all A > |Q|, where Q
isa positive frequency. Then f(t) is completely determined by its values at the

points t; =7, % and f(t) = ZOO f (%T) sinc(Qt — jm).
j:—oo

Proof: The complex Fourier series for £ (1) is Z::_ C,e™m /2 where C, = —f fe ™M /0 gy =
%ffmf(/l)e‘i”’l" /2d) since f(1) = 0 outside (—Q, 9.) Now, C,, = Ef_mf(/l)e‘m’l” /) =

V2r 1 o 2 —inAm /Q \/ﬁ ia(- V21
20 \/Ef—oof(/l)e dr = [\/ﬁf f(/l)e d)l] 20 f( )

fQ) = Z %f (— %) en@m/Q) — mz eini™ /2 By letting j = —n, we obtain
n=—oo

.. AT N
mz ]n e ¢ Now, by definition of Inverse Fourier Transform, we have T‘l{f(l)} =

f(® —\/_f mz fg) —ij(Am/Q) pidt gy —

]_ 00
1 \2m () —ii (A /Q o _ 1 o) in Q i /) ~
V2w 20 j f(“)f‘“’e von/De! dl_ﬁzj':—mf(ﬁ)f_nel( T da =

_1\"” jm\ 2Qsin(Qt—jm) _ ' Y .
T ij_mf (Q ) B e Zj:_oof (Q ) sinc(Qt — jm) .

[oe]
1 (jn) ir(t—jm /)|
20 it/ |-

j=—00

This completes the proof. m

If f(t) is even, then f(4) is real. If f(¢) is odd, then f(4) is imaginary.

Proof: By definition of Fourier transform, f(1) = \/%_nfio f()e ™ dt = \/%_nf_oooo f(t)[cos At —
isinAt]dt = \/%_nf_mm f(t) cos At dt — \/%_nf:o f(t) sinAt dt . Now, if f(t) is even, then f(t) sin At is
odd, so \/%fjom f(t)sinAtdt = 0and f(1) = \/%ffom f(t) cos At dt. Similarly, if f(t) is odd, then
f(t) cos At is odd, so \/%ff; f(t)cosAtdt = 0and f(1) = — —f f(t) sin At dt. This completes

the proof. m



